External quality factor: What is going on inside a half-wave resonator?

Nathan Prins

Supervisor: Dr. Zachary Conway

Physics Division
Argonne National Laboratory

July 24th, 2015

Why?

- Accelerating cavities use resonant electromagnetic (EM) fields to accelerate and focus particle bunches
 - we use half-wave resonators
- Need to monitor EM field
 - Amplitude: amount of acceleration of the bunch
 - Phase: amount of acceleration and longitudinal focusing of the bunch

Focusing with phase

- Particle *a* arrives first
 - most initial energy
 - receives smaller acceleration
- Particle b represents ideal particle
 - enters cavity at synchronous phase
- Particle c arrives last
 - least initial energy
 - receives greatest acceleration

What is a half-wave resonator (HWR)?

- A HWR resonates transverse electric and magnetic (TEM) modes
 - must be a coaxial line
 - fundamental mode is a half-wavelength
 - beam axis is where E-field is maximum for maximum acceleration
- Our HWR is used to accelerate H⁻ ions
 - $f_0 = 162.5 \text{ MHz}; \beta = 0.112$
 - superconducting niobium

Above: The volume electric (top) and magnetic (bottom) fields shown as a contour plot for an ideal coaxial line. The plots under each figure show the general half-wave shape of the respective field amplitudes.

Left: The volume electric (top) and magnetic (bottom) fields shown as a contour plot for our HWR.

*for contour plots, blue corresponds to low magnitudes, red corresponds to high magnitudes.

External quality factor for half-wave resonators

- We need to couple power out of the cavity.
 - from Faraday's law: use changing magnetic field

$$\mathcal{E} = -\frac{d\Phi}{dt} = -\frac{d}{dt} \iint \mathbf{B} \cdot d\mathbf{a}$$

- calculate power from induced voltage
- A convenient parameter is the external quality factor:

$$Q_{ext} = \frac{\omega_{rf} U}{P_{out}}$$

- External quality Q_{ext} : losses out of couplers
- Loaded quality Q_L : total losses

Above: The circuit drawn is an ideal square loop used for hand calculations.

Left: We put a coupling loop in one of the ports on the top of the cavity. The zoomed-in figure is a cross-section view of the port showing the loop geometry.